A Resource Minimizing Scheduling Algorithm with Ensuring the Deadline and Reliability in Heterogeneous Systems

Laiping Zhao1

Yizhi Ren2, Kouichi Sakurai1
1Department of Informatics, Kyushu University, Japan
2School of Software Engineering, Hangzhou Dianzi University, China

The first author is supported by the governmental scholarship from China Scholarship Council.
Fault tolerant technologies

- Two approaches for fault tolerance
 - Primary/Backup (Qin & Jiang, 2006; Zheng et al. 2009)
 - The backup is activated after the primary fails.
 - Active replication (Benoit et al. 2008, 2009; Zhao et al. 2010)
 - Simultaneously assign $f+1$ replicas to different processors to tolerate f failures.
A comparison

<table>
<thead>
<tr>
<th></th>
<th>Primary/Backup</th>
<th>Active replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Less resource usage</td>
<td>Quick response</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Increase the execution time</td>
<td>Waste many resources</td>
</tr>
<tr>
<td>Target system</td>
<td>System with high system load</td>
<td>Hard time critical system with abundant resources</td>
</tr>
</tbody>
</table>

Energy consumption
Economic cost
System throughput
etc...
Outline

◆ Placing replicas to reliable processors
 ➢ Reliability
 ➢ Scheduling with meeting deadline
 ➢ Task priority

◆ DRR scheduling
◆ Experiment
◆ Conclusion and future works
Active replication scheme with dynamic number of replicas (ARD):
- Providing the same reliability as active replication (AR);
- Using less replicas;
- Ensuring the deadline.
Placing replicas to reliable processors

Workflow

AR (Tolerate 2 failures)

Workflow

ARD
Placing replicas to reliable processors

- Providing the same reliability:

- How to provide a comparable reliability with less replicas?
 - Select processors with higher reliability.
Reliability

- Approaches for reliability analysis/prediction exist:
 - Javadi, Kondo, Vincent and Anderson (2009)
 - Narasimhan et al. (2005)
 - Oliner, Sahoo, Moreira, Gupta and Sivasubramaniam (2004)
 - Rood and Lewis (2010)

- For simplification,
 - Qin and Jiang (2006); Jin et al. (2009) etc.
 - Assume the failure distribution follows a Poisson process.
Reliability

- Reliability consists of computation and communication reliability.
- **Computation reliability**
 \[f(k, \lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \]
- **Communication reliability**
 - Processors in two tracks (e.g. 1 and 3)
 - Two possible communication paths
 - Processors in the same track (e.g. 1 and 2)
 - One communication path
scheduler

\[R(AR) = R(ARD) \]

The subreliability for a task should not less than: \[r = \sqrt[n]{R} \], (\(n \) is the number of tasks in a workflow).
Scheduling with meeting deadline

- Breadth First Search (BFS) based subdeadline assignment:

 - Subdeadline of the exit tasks equal to the overall deadline T.
 - Parents’ subdeadline

 = Children’s subdeadline – communication – execution;
 - Select the minimum value if multiple results are gotten.
Task priority

- Sorting tasks from a workflow into order, while ensuring the precedence relationship.

- Two approaches:
 - **Bottom level (bl)**
 - \(bl(x) = exe(x) + \text{comm}(x,y) + bl(y), \) \(y \) is a child of \(x \).
 - HEFT (Topcuoglu et al. 2002); MaxRe(Zhao et al. 2010)

 - **Top level + Bottom level (tl+bl)**
 - \(tl(x) = tl(z) + exe(z) + \text{comm}(z,x), \) \(z \) is a parent of \(x \).
 - FTSA(Benoit et al. 2008); CAFT(Benoit et al. 2009); CPOP(Topcuoglu et al. 2002).
FTSA(bl) (Benoit et al. 2008) has a better performance than FTSA(tl+bl). Therefore, we use the tl value in our scheduling.
Outline

◆ Placing replicas to reliable processors
 ➢ Reliability
 ➢ Scheduling with meeting deadline
 ➢ Task priority

◆ DRR scheduling

◆ Experiment results

◆ Conclusion and future works
Deadline-Reliability-Resource-aware (DRR) scheduling:

DRR algorithm
Deadline-Reliability-Resource-aware (DRR) scheduling:

DRR algorithm
If a task subdeadline is violated by its finish time, the job will be rejected.

- Proved by apagoge.

For any entry task x, $ET(x) < subdeadline(x)$ cannot guarantee the job’s successful completeness within deadline T.

- Because of processor contention.
Processor contention results in deadline violation.

- In the case of ready time > arrive time,
 Subdeadline(t3) – ET(t3) < ET(t1),
- The job will be rejected.
Outline

- Placing replicas to reliable processors
 - Reliability
 - Scheduling with meeting deadline
 - Task priority
- DRR scheduling
- Experiments
- Conclusion and future works
Experiments

- **Simulation**
 - Randomly generated graphs
 - Heterogeneous system

- **Evaluation metrics:**
 - *Computation cost*
 - Defined as the overall computation time of all processors.
 - *Communication cost*
 - Defined as the overall communication time of all communication links.
Experiments

- Computation resource usage:

DRR and MaxRe save 50% computation resources.
Experiments

- Communication resource usage:

DRR and MaxRe save 70% communication resources.
Conclusion and future works

◆ This work improve the active replication scheme:
 - Achieves corresponding reliability with less resources;
 - Guarantee the deadline constraint.

◆ The future work:
 - A comprehensive study of both primary/backup and active replication based scheduling.
Thanks for the listening
Q&A